Sparse Spatio-temporal Gaussian Processes with General Likelihoods

نویسندگان

  • Jouni Hartikainen
  • Jaakko Riihimäki
  • Simo Särkkä
چکیده

In this paper, we consider learning of spatio-temporal processes by formulating a Gaussian process model as a solution to an evolution type stochastic partial differential equation. Our approach is based on converting the stochastic infinite-dimensional differential equation into a finite dimensional linear time invariant (LTI) stochastic differential equation (SDE) by discretizing the process spatially. The LTI SDE is time-discretized analytically, resulting in a state space model with linear-Gaussian dynamics. We use expectation propagation to perform approximate inference on non-Gaussian data, and show how to incorporate sparse approximations to further reduce the computational complexity. We briefly illustrate the proposed methodology with a simulation study and with a real world modelling problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse-posterior Gaussian Processes for general likelihoods

Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...

متن کامل

Sparse-posterior Gaussian Processes for general likelihoods

Gaussian processes (GPs) provide a probabilistic nonparametric representation of functions in regression, classification, and other problems. Unfortunately, exact learning with GPs is intractable for large datasets. A variety of approximate GP methods have been proposed that essentially map the large dataset into a small set of basis points. Among them, two state-of-the-art methods are sparse p...

متن کامل

Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution

Modelling longitudinal changes in organs is fundamental for the understanding of biological and pathological processes. Most of the previous works on spatio-temporal modelling of image time series relies on the assumption of stationarity of the local spatial correlation, and on the separability between spatial and temporal processes. These assumptions are often made in order to lead to computat...

متن کامل

Structured Spatio-Temporal Shot-Noise Cox Point Process Models, with a View to Modelling Forest Fires

Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable for statistical analysis, using spatio-temporal versions of intensity and inhomogeneous K-functions, q...

متن کامل

Structured spatio - temporal shot - noise Cox point process models , with a view to modelling forest fires August 11 , 2008

Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable for statistical analysis, using spatio-temporal versions of intensity and inhomogeneous K-functions, q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011